9 research outputs found

    ICT and Privacy in Europe. Experiences from technology assessment of ICT and Privacy in seven different European countries. Final report October 16, 2006, European Parliamentary Technology Assessment network (EPTA)

    No full text
    This report is offered by the European Parliamentary Technology Assessment network (EPTA) as a contribution to the European debate and policy-making on privacy. It is based on 28 technology assessment projects carried out by the participating EPTA members. These projects have been reviewed and a cross-European synthesis has been made. From the analysis of the societal as well as technological developments we have derived conclusions and policy options

    Fecal Microbiota Transplantation in Systemic Sclerosis: A Double-Blind, Placebo-Controlled Randomized Pilot Trial

    No full text
    Objectives Systemic sclerosis (SSc) is an auto-immune, multi organ disease marked by severe gastrointestinal (GI) involvement and gut dysbiosis. Here, we aimed to determine the safety and efficacy of fecal microbiota transplantation (FMT) using commercially-available anaerobic cultivated human intestinal microbiota (ACHIM) in SSc. Methods Ten patients with SSc were randomized to ACHIM (n = 5) or placebo (n = 5) in a double-blind, placebo-controlled 16-week pilot. All patients had mild to severe upper and lower GI symptoms including diarrhea, distention/bloating and/or fecal incontinence at baseline. Gastroduodenoscopy transfer of ACHIM or placebo was performed at weeks 0 and 2. Primary endpoints were safety and clinical efficacy on GI symptoms assessed at weeks 4 and 16. Secondary endpoints included changes in relative abundance of total, immunoglobulin (Ig) A- and IgM-coated fecal bacteria measured by 16s rRNA sequencing. Results ACHIM side effects were mild and transient. Two placebo controls experienced procedure-related serious adverse events; one developed laryngospasms at week 0 gastroduodenoscopy necessitating study exclusion whilst one encountered duodenal perforation during gastroduodenoscopy at the last study visit (week 16). Decreased bloating, diarrhea and/or fecal incontinence was observed in four of five patients in the FMT group (week 4 or/and 16) and in two of four in the placebo group (week 4 or 16). Relative abundance, richness and diversity of total and IgA-coated and IgM-coated bacteria fluctuated more after FMT, than after placebo. Conclusions FMT of commercially-available ACHIM is associated with gastroduodenoscopy complications but reduces lower GI symptoms by possibly altering the gut microbiota in patients with SSc

    Improving public cancer care by implementing precision medicine in Norway: IMPRESS-Norway

    No full text
    Background Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. Methods In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient’s tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like ‘admissible’ monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. Discussion Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public–private collaboration to establish a national infrastructure for precision oncology

    Improving public cancer care by implementing precision medicine in Norway: IMPRESS-Norway

    No full text
    Background Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. Methods In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient’s tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like ‘admissible’ monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. Discussion Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public–private collaboration to establish a national infrastructure for precision oncology

    Improving public cancer care by implementing precision medicine in Norway: IMPRESS-Norway

    Get PDF
    Background Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. Methods In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient’s tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like ‘admissible’ monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. Discussion Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public–private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021
    corecore